Physics
Gravitational Potential Energy calculator
$$ U = m g h $$
\(U \, \) is gravitational potential energy
in joules (J)
\(m \, \) is mass
in kilograms (kg)
\(g \, \) is acceleration due to gravity
in metres per second squared (m / s2)
\(h \, \) is height
in metres (m)
\( U \)
= \( m g h\)
= \( \mathrm{ kg } \) \( \times \) \( \mathrm{ m/s^2 } \) \( \times \) \( \mathrm{ m } \)
= \( \mathrm{ J } \)
= \( \mathrm{ J } \)
\( m \)
= \( \displaystyle{\frac{ U }{ g h}} \)
= \( \mathrm{ J } \) \( \div \) \( ( \) \( \mathrm{ m/s^2 } \) \( \times \) \( \mathrm{ m } \) \( ) \)
= \( \mathrm{ kg } \)
= \( \mathrm{ kg } \)
\( g \)
= \( \displaystyle{\frac{ U }{ m h } } \)
= \( \mathrm{ J } \) \( \div \) \( ( \) \( \mathrm{ kg } \) \( \times \) \( \mathrm{ m } \) \( ) \)
= \( \mathrm{ m/s^2 } \)
= \( \mathrm{ m/s^2 } \)
\( h \)
= \( \displaystyle{\frac{ U }{ m g } } \)
= \( \mathrm{ J } \) \( \div \) \( ( \) \( \mathrm{ kg } \) \( \times \) \( \mathrm{ m/s^2 } \) \( ) \)
= \( \mathrm{ m } \)
= \( \mathrm{ m } \)