Physics
Newton's Law of Universal Gravitation Calculator
$$ F \enspace = \enspace G \enspace \frac{ m_1 \enspace m_2 }{ r^2 } $$
\( F \) | - | Force in newtons (N) |
\( G \) | - | Gravitational constant = 6.674 × 10-11 m2 / kg / s2 |
\( m_1 \) | - | Mass 1 in kilograms (kg) |
\( m_2 \) | - | Mass 2 in kilograms (kg) |
\( r \) | - | Distance between centres of masses in metres (m) |
\( F \)
= \( G \enspace \displaystyle{ \frac{ m_1 \enspace m_2 }{ r^2 } } \)
= \( \mathrm{ N } \, (\mathrm{ newtons }) \)
= \( \mathrm{ N } \, (\mathrm{ newtons }) \)
\( m_1 \)
= \( \displaystyle{ \frac{ F \enspace r^2 }{ G \enspace m_2 } } \)
= \( \mathrm{ kg } \)
= \( \mathrm{ kg } \)
\( m_2 \)
= \( \displaystyle{ \frac{ F \enspace r^2 }{ G \enspace m_1 } } \)
= \( \mathrm{ kg } \)
= \( \mathrm{ kg } \)
\( r \)
= \( \displaystyle{ \sqrt{ \frac{ G \enspace m_1 \enspace m_2 }{ F } } } \)
= \( \mathrm{ m } \)
= \( \mathrm{ m } \)