Physics
Newton's Law of Universal Gravitation Calculator
$$ F \enspace = G \enspace \frac{ m_1 \enspace m_2 }{ r^2 } $$
\( F \) | - | force in newtons (N) |
\( G \) | - | Gravitational constant = 6.674 × 10-11 m3 / kg / s2 |
\( m_1 \) | - | mass 1 in kilograms (kg) |
\( m_2 \) | - | mass 2 in kilograms (kg) |
\( r \) | - | distance between centres of masses (m) |
\( F \)
= \( G \enspace \displaystyle{ \frac{ m_1 \enspace m_2 }{ r^2 } } \)
= \( \mathrm{N} \, (\mathrm{newtons}) \)
= \( \mathrm{N} \, (\mathrm{newtons}) \)
\( m_1 \)
= \( \displaystyle{ \frac{ F \enspace r^2 }{ G \enspace m_2 } } \)
= \( \mathrm{kg} \)
= \( \mathrm{kg} \)
\( m_2 \)
= \( \displaystyle{ \frac{ F \enspace r^2 }{ G \enspace m_2 } } \)
= \( \mathrm{kg} \)
= \( \mathrm{kg} \)
\( r \)
= \( \displaystyle{ \sqrt{ \frac{G \enspace m_1 \enspace m_2}{F} } } \)
= \( \mathrm{m} \)
= \( \mathrm{m} \)