Physics

The Drag Equation Calculator


\( D \)

= \( C_d \, \times \, \frac{1}{2} \, \times \, \rho \, \times \, v^2 \, \times \, S \)

 

=  

\( \times \) \( \frac{1}{2} \)

\( \times \)   \( \mathrm{kg/m^3} \)

\( \times \) (   \( \mathrm{m/s} \) ) 2

\( \times \)   \( \mathrm{m^2} \)

 

=   \( \mathrm{N} \, (\mathrm{newtons}) \)

=   \( \mathrm{N} \, (\mathrm{newtons}) \)   (to significant figures)


\( C_d \)

= \( \displaystyle{ \frac{D}{ \frac{1}{2} \, \times \, \rho \, \times \, v^2 \, \times \, S } } \)

 

=   \( \mathrm{N} \)

\( \div \) \( ( \)

  \( \qquad \frac{1}{2} \)

\( \times \)   \( \mathrm{kg/m^3} \)

\( \times \) (   \( \mathrm{m/s} \) ) 2

\( \times \)   \( \mathrm{m^2} \)

  \( ) \)

 

=   \( \mathrm{kg} \quad \)

=   \( \mathrm{kg} \quad \)   (to significant figures)


\( ρ \)

= \( \displaystyle{ \frac{D}{ \frac{1}{2} \, \times \, C_d \, \times \, v^2 \, \times \, S } } \)

 

=   \( \mathrm{N} \)

\( \div \) \( ( \)

  \( \qquad \frac{1}{2} \)

\( \times \)

\( \times \) (   \( \mathrm{m/s} \) ) 2

\( \times \)   \( \mathrm{m^2} \)

  \( ) \)

 

=   \( \mathrm{kg} \quad \)

=   \( \mathrm{kg} \quad \)   (to significant figures)


\( S \)

= \( \displaystyle{ \frac{D}{ \frac{1}{2} \, \times \, C_d \, \times \, \rho \, \times \, v^2 } } \)

 

=   \( \mathrm{N} \)

\( \div \) \( ( \)

  \( \qquad \frac{1}{2} \)

\( \times \)

\( \times \)   \( \mathrm{kg/m^3} \)

\( \times \) (   \( \mathrm{m/s} \) ) 2

  \( ) \)

 

=   \( \mathrm{kg} \quad \)

=   \( \mathrm{kg} \quad \)   (to significant figures)


\( v \)

= \( \displaystyle{ \sqrt{ \frac{D}{ \frac{1}{2} \, \times \, C_d \, \times \, \rho \, \times \, S } } } \)

 

= \( \displaystyle{(} \)   \( \mathrm{N} \)

\( \div \) \( ( \)

  \( \qquad \frac{1}{2} \)

\( \times \)

\( \times \)   \( \mathrm{kg/m^3} \)

\( \times \)   \( \mathrm{m^2} \)

  \( ) \)

  \( \displaystyle{)^{-2}} \)

 

=   \( \mathrm{kg} \quad \)

=   \( \mathrm{kg} \quad \)   (to significant figures)