Physics
The Drag Equation Calculator
$$ D \enspace = \enspace C_d \enspace \frac{1}{2} \enspace \rho \enspace v^2 \enspace S $$
( \(\small{D}\) is drag force, \(\small{C_d}\) is drag coefficient, \(\rho\) is fluid density, \(\small{v}\) is velocity, \(\small{S}\) is surface area )
\( D \)
= \( C_d \, \times \, \frac{1}{2} \, \times \, \rho \, \times \, v^2 \, \times \, S \)
=
\( \times \) \( \frac{1}{2} \)
\( \times \) \( \mathrm{kg/m^3} \)
\( \times \) ( \( \mathrm{m/s} \) ) 2
\( \times \) \( \mathrm{m^2} \)
= \( \mathrm{N} \, (\mathrm{newtons}) \)
= \( \mathrm{N} \, (\mathrm{newtons}) \)
\( C_d \)
= \( \displaystyle{ \frac{D}{ \frac{1}{2} \, \times \, \rho \, \times \, v^2 \, \times \, S } } \)
= \( \mathrm{N} \)
\( \div \) \( ( \)
\( \qquad \frac{1}{2} \)
\( \times \) \( \mathrm{kg/m^3} \)
\( \times \) ( \( \mathrm{m/s} \) ) 2
\( \times \) \( \mathrm{m^2} \)
\( ) \)
= \( \mathrm{kg} \quad \)
= \( \mathrm{kg} \quad \)
\( ρ \)
= \( \displaystyle{ \frac{D}{ \frac{1}{2} \, \times \, C_d \, \times \, v^2 \, \times \, S } } \)
= \( \mathrm{N} \)
\( \div \) \( ( \)
\( \qquad \frac{1}{2} \)
\( \times \)
\( \times \) ( \( \mathrm{m/s} \) ) 2
\( \times \) \( \mathrm{m^2} \)
\( ) \)
= \( \mathrm{kg} \quad \)
= \( \mathrm{kg} \quad \)
\( S \)
= \( \displaystyle{ \frac{D}{ \frac{1}{2} \, \times \, C_d \, \times \, \rho \, \times \, v^2 } } \)
= \( \mathrm{N} \)
\( \div \) \( ( \)
\( \qquad \frac{1}{2} \)
\( \times \)
\( \times \) \( \mathrm{kg/m^3} \)
\( \times \) ( \( \mathrm{m/s} \) ) 2
\( ) \)
= \( \mathrm{kg} \quad \)
= \( \mathrm{kg} \quad \)
\( v \)
= \( \displaystyle{ \sqrt{ \frac{D}{ \frac{1}{2} \, \times \, C_d \, \times \, \rho \, \times \, S } } } \)
= \( \displaystyle{(} \) \( \mathrm{N} \)
\( \div \) \( ( \)
\( \qquad \frac{1}{2} \)
\( \times \)
\( \times \) \( \mathrm{kg/m^3} \)
\( \times \) \( \mathrm{m^2} \)
\( ) \)
\( \displaystyle{)^{-2}} \)
= \( \mathrm{kg} \quad \)
= \( \mathrm{kg} \quad \)